圣达尔智能仪表(苏州)有限公司

圣达尔自动化工业流量计量方案一站式服务

扫一扫

TEL: 0512-66155966 138-0620-5529

圣达尔自动化电磁流量计/热量表/水表西部捐赠百万仪表
科氏力质量流量计
科氏力质量流量计是我公司根据科里奥利力原理开发的一种新型的流量测量仪表可直接测量封闭管道内流体的质量流量和介质的密度流量计由流量测量传感器和信号转换器两部分组成。
全国热线

138-0620-5529

产品特点
  •   能够直接测量流体的质量流量(这对能源的计量和化学反应等生产过程检测控制具有重要意义)
  •   测量准确度高(测量准确度可保证在 0.1%~0.5%)
  •   可测比较大,一般保证基本准确度的可测比为 10:1 或 20:1
  •   应用范围广,除正常的流体测量外还可测量一般流体测量仪表较难测量的工业介质,如高粘度流体、各种装液、悬浮液等
  •   可在线测量被测介质的密度、温度等参数,并以此派生测量溶液中溶质的浓度
  •   安装要求不高,对上下游直管段没有什么要求
  •   运行可靠、维修率低

产品·参数
支持流量、功能、介质多维度定制

测量原理


一台质量流量计的计量系统包括一台传感器和一台用于信号处理的变送器。Rosemount质量流量计依据牛顿第二定律:力=质量×加速度(F=ma),当质量为m的质点以速度V在对P轴作角速度ω旋转的管道内移动时,质点受两个分量的加速度及其力:

(1)法向加速度,即向心加速度αr,其量值等于2ωr,朝向P轴;

(2)切向角速度αt,即科里奥利加速度,其值等于2ωV,方向与αr垂直。由于复合运动,在质点的αt方向上作用着科里奥利力Fc=2ωVm,管道对质点作用着一个反向力-Fc=-2ωVm。

当密度为ρ的流体在旋转管道中以恒定速度V流动时,任何一段长度Δx的管道将受到一个切向科里奥利力ΔFc: ΔFc=2ωVρAΔx (1)

式中,A—管道的流通截面积。

由于存在关系式:mq=ρVA

所以:ΔFc =2ωqmΔx (2)

因此,直接或间接测量在旋转管中流 动流体的科里奥利力就可以测得质量流量。

应用


质量流量计的特点确定了流量计可以在下述领域中得到广泛的应用:

流体能源、流体原料、产品的计量,例如石油、化工原料及产品的装车(装船)、卸车(卸船)的计量及包装计量:石油、化工、食品、医药行业生产过程对物料的精准计量、控制:

高粘度物料的在线计量,例如沥青、重油、油脂的计量:有悬浮物及固体颗粒物物料的计量,例如水泥浆、石灰浆的计量:

易凝固物料的保温计量,例如沥青等易凝固物料的计量实现保温状态工作:

中高压气体的精确计量,例如 CNG 石油然气的计量:

微小流量测量,例如精细化工及医药行业微小流量的测量:

在线测量介质的密度,并以此派生出测量溶液的溶质所含的浓度,例如石灰浆液石灰浓度测量:

超低温介质流量的测量,例如液氮、液氧等液化气的测量:

高温介质的流量测量,例如高温油(温度可达 200~300℃)的测量

高压介质的流量测量,例如石油钻井固井用水泥浆流量的测量(高压几十MPa)等等

U型流量管


在没有流体流经流量管时,流量管由安装在流量管端部的电磁驱动线圈驱动,其振幅小于1mm,频率约为80Hz,流体流入流量管时被强制接受流量管的上下垂直运动。在流量管向上振动的半个周期内,流体反抗管子向上运动而对流量管施加一个向下的力;反之,流出流量管的流体对流量管施加一个向上的力以反抗管子向下运动而使其垂直动量减少。这便导致流量管产生扭曲,在振动的另外半个周期,流量管向下振动,扭曲方向则相反,这一扭曲现象被称之为科里奥利(Coriolis)现象,即科氏力。

根据牛顿第二定律,流量管扭曲量的大小完全与流经流量管的质量流量大小成正比,安装于流量管两侧的电磁信号检测器用于检测流量管的振动。当没有流体流过流量管时,流量管不产生扭曲,两侧电磁信号检测器的检测信号是同相位的;当有流体流经流量管时,流量管产生扭曲,从而导致两个检测信号产生相位差,这一相位差的大小直接正比于流经流量管的质量流量。

由于这种质量流量计主要依靠流量管的振动来进行流量测量,流量管的振动,以及流过管道的流体的冲力产生了科氏力,致使每个流管产生扭转,扭转量与振动周期内流过流管的质量流速成正比。由于一个流管的扭曲滞后于另一个流管的扭曲,质量管上的传感器输出信号可通过电路比较,来确定扭曲量。

电路中由时间差检测器测量左右检测信号之间的滞后时间。这个“时间差”ΔT经过数字量测量、处理、滤波以减少噪声,提高测量分辨率。时间差乘上流量标定系数来表示质量流量。由于温度影响流管钢性,科氏力产生的扭曲量也将受温度影响。被测量的流量不断由变送器调整,后者检测粘在流管外表上的铂电阻温度计输出。变送器用一个三相的电阻温度计电桥放大电路来测量传感器温度,放大器的输出电压转化成频率,并由计数器数字化后读入微处理器。

密度测量原理


流量管的一端被固定,而另一端是自由的。这一结构可看做一重物悬挂在弹簧上构成的重物/弹簧系统,一旦被施以一运动,这一重物/弹簧系统将在它的谐振频率上振动,这一谐振频率与重物的质量有关。质量流量计的流量管是通过驱动线圈和反馈电路在它的谐振频率上振动,振动管的谐振频率与振动管的结构、材料及质量有关。振动管的质量由两部分组成:振动管本身的质量和振动管中介质的质量。每一台传感器生产好后振动管本身的质量就确定了,振动管中介质的质量是介质密度与振动管体积的乘积,而振动管的体积对每种口径的传感器来说是固定的,因此振动频率直接与密度有相应的关系,那么,对于确定结构和材料的传感器,介质的密度可以通过测量流量管的谐振频率获得。

利用流量测量的一对信号检测器可获得代表谐振频率的信号,一个温度传感器的信号用于补偿温度变化而引起的流量管钢性的变化,振动周期的测量是通过测量流量管的振动周期和温度获得,介质密度的测量利用了密度与流量管振动周期的线性关系及标准的校定常数。

科氏质量流量传感器振动管测量密度时,管道钢性、几何结构和流过流体质量共同决定了管道装置的固有频率,因而由测量的管道频率可推出流体密度。变送器用一个高频时钟来测量振动周期的时间,测量值经数字滤波,对于由操作温度导致管道钢性变化,进而引起固有频率的变化进行补偿后,用传感器密度标定系数来计算过程流体密度。

工作原理


当一个位于以 P 为固定点(旋转中心)作旋转运动的管子内的质点做朝向旋转中心或离向旋转中心的运动时,将产生一惯性力,

原理如图 1.1:

图中质量为δm的质点以匀速υ在管道内向右运动,而管道围绕固定点 P 以角速度ω旋转。此时这个质点将获得两个加速度分量:

1、法向加速度αr(向心加速度),其量值等于ω²r,其方向朝向 P 点。

2、切向加速度αt(科里奥利加速度),其量值等于 2ωυ,方向与αr 垂直。

由切向加速度产生的作用力称为科里奥利力,其大小等于 Fc=2ωυδm。在图 1.1 中流体

δm=ρA×ΔX,因此科氏力可以表示为:

ΔFc=2ωυ×δm=2ω×υ×ρ×A×ΔX=2ω×δqm×ΔX

ΔFc=2ωυ×δm=2ω×υ×ρ×A×ΔX=2ω×δqm×ΔX

式中 A 为管道内截面积

δqm=δdm/dt=υρA

对于特定的旋转管道,其频率特性是一定的,ΔFc 仅取决于δqm 。因此直接或间接测量科氏力就可以测量质量流量。科氏原理质量流量计就是根据上述原理工作的。

实际的流量传感器并非实现旋转运动,而代之以管道振动。其原理示意如图 1.2、图 1.3、图 1.4 所示。一个弯管道的两端被固定,在两个固定点的中间位置给管道施加振动力(按管道的谐振频率),使其以固定点为轴以其自然频率ω振动。当管道内没有流体流动时,管道只受的谐振频率),使其以固定点为轴以其自然频率ω振动。当管道内没有流体流动时,管道只受外加振动力作用,管道两个半段振动方向相同,没有相位差。当有流体流动时受管道内流动的介质质点科氏力 Fc 的影响(在管道的两个半段科氏力 F1、F2 大小相等、方向相反图 1.2),管道的两个半段按相反的方向发生扭动,产生相位差(图 1.3、图 1.4),这一相位差同质量流量成正比。传感器的设计就是把科氏力的测量转为对振动管两侧相位时差的测量,这就是科氏质量流量计的工作原理。